This post is one in a series featuring the complete slate of advanced energy technologies outlined in the report This Is Advanced Energy.
Image courtesy of Waste Management.
Landfill gas (LFG) is a form of biogas produced by decomposition of organic waste in landfills. This gas is a roughly 50:50 mixture of methane and carbon dioxide, with smaller amounts of nitrogen and other compounds. LFG is produced naturally in all landfills, and can be captured and used for productive purposes instead of being vented or flared. In order to capture LFG, perforated tubes are inserted into the landfill. With existing landfills, the collection system must be added, but with new landfills the system can be installed as part of normal operations. After being extracted from the landfill using vacuum pumps, the LFG is compressed, dried, cleaned of certain contaminants, and used to power a gas turbine, a gas engine, such as GE’s Jenbacher landfill gas engine, or in some cases a boiler or steam turbine. As a rough rule-of-thumb, 1 million tons of municipal solid waste (MSW) in a landfill will produce enough LFG to produce 1 MW of electricity for about 20 years. LFG can also be used in combined heat and power systems (CHP), or used directly as an industrial process fuel if a suitable site exists near a landfill. With addition purification, LFG can be upgraded to a pipeline-quality substitute for natural gas, including compressed natural gas (CNG) for vehicles.